Cluster Ensemble and Multi- Objective Clustering Methods

نویسنده

  • Katti Faceli
چکیده

Clustering is an important tool for data exploration. Several clustering algorithms exist, and new algorithms are frequently proposed in the literature. These algorithms have been very successful in a large number of real-world problems. However, there is no clustering algorithm, optimizing only a single criterion, able to reveal all types of structures (homogeneous or heterogeneous) present in a dataset. In order to deal with this problem, several multi-objective clustering and cluster ensemble methods have been proposed in the literature, including our multi-objective clustering ensemble algorithm. In this chapter, we present an overview of these methods, which, to a great extent, are based on the combination of various aspects of traditional clustering algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble

An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...

متن کامل

Inducing multi-objective clustering ensembles with genetic programming

The recent years have witnessed a growing interest in two advanced strategies to cope with the data clustering problem, namely, clustering ensembles and multi-objective clustering. In this paper, we present a genetic programming based approach that can be considered as a hybrid of these strategies, thereby allowing that different hierarchical clustering ensembles be simultaneously evolved takin...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Using Multi-Objective Optimization for the Selection of Ensemble Members

In this paper we propose a clustering process which uses a multi-objective evolution to select a set of diverse clusterings. The selected clusterings are then combined using a consensus method. This approach is compared to a clustering process where no selection is applied. We show that careful selection of input ensemble members can improve the overall quality of the final clustering. Our algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016